
FIRST AND FOLLOW Example

CS 4447 /CS 9545 -- Stephen Watt
University of Western Ontario

CS4447/CS9545

FIRST/FOLLOW Main Ideas

• Look at all the grammar rules.

• Examine the possibilities of all substrings
of RHS symbols being nullable.

• Nullable RHS prefixes imply adding to FIRST sets.

• Nullable RHS suffixes imply adding to FOLLOW sets.

• Nullable RHS interior substrings imply adding to
FOLLOW sets.

CS4447/CS9545

Algorithm for FIRST, FOLLOW, nullable

for each symbol X
FIRST[X] := { }, FOLLOW[X] := { }, nullable[X] := false

for each terminal symbol t
FIRST[t] := {t}

repeat
for each production X → Y1 Y2 … Yk,

if all Yi are nullable then
nullable[X] := true

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

until FIRST, FOLLOW, nullable do not change

CS4447/CS9545

Example Grammar

G = (Σ, V, S, P), where

Σ = { a, c, d}

V = {X, Y, Z}

S = Z

P = {

Z → d, Y →ε, X → Y,

Z → X Y Z, Y → c, X → a

}

Initialization

The initialization loops give

FIRST[X] := {} FOLLOW[X] := {} nullable[X] := false

FIRST[Y] := {} FOLLOW[Y] := {} nullable[Y] := false

FIRST[Z] := {} FOLLOW[Z] := {} nullable[Z] := false

FIRST[a] := {a}

FIRST[c] := {c}

FIRST[d] := {d}

CS4447/CS9545

Rules That We Will Iterate

for each production X → Y1 Y2 … Yk,
if all Yi are nullable then

nullable[X] := true
if Y1..Yi-1 are nullable then

FIRST[X] := FIRST[X] U FIRST[Yi]
if Yi+1..Yk are all nullable then

FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]
if Yi+1..Yj-1 are all nullable then

FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

CS4447/CS9545

How to Interpret Sub-sequences

Yi..Yk when i < k has k-i+1 elements

Yi..Yk when i = k has k-i+1 = 1 elements

Yi..Yk when i = k+1 has k-i+1 = 0 elements

Otherwise, not defined.

(Some applications actually do define i > k+1 by

making a subsequence taking the original elements

backwards, which can be interesting and powerful.)

CS4447/CS9545

Specialize for Z → d

Taking Z → d as the production X → Y1..Yk,
we have X is Z and Y1 is d. There are no other Yi.

The first rule

if all Yi are nullable then
nullable[X] := true

is
if d is nullable (it isn’t) then

nullable[Z] := true.

CS4447/CS9545

Specialize for Z → d

The second rule

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

can be instantiated only for i=1. This gives

if Y1..Y0 = ε is nullable (which it is) then
FIRST[Z] := FIRST[Z] U { d }

CS4447/CS9545

Specialize for Z → d

The third rule

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

can be instantiated only for i=1. This gives
if Y2..Y1= ε is nullable then

FOLLOW[d] := FOLLOW[d] U FOLLOW[Z]

We are not interested in computing FOLLOW of terminals,
so we won’t bother with this one.

CS4447/CS9545

Specialize for Z → d

The fourth rule

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

has no valid values for i and j.

The only Yi is Y1, so we would have to have i=j=1.

But the subsequence Y2..Y0 does not exist.

CS4447/CS9545

Rules for X → a, Y → c, Z → d

The same logic applies for all of X → a, Y → c, Z → d.

This gives:

FIRST[X] := FIRST[Z] U {a}
FIRST[Y] := FIRST[Z] U {c}
FIRST[Z] := FIRST[Z] U {d}

There are also some rules to compute FOLLOW of terminals
but we don’t care about those.

CS4447/CS9545

Specialize for X → Y

Taking X → Y as the production X → Y1..Yk,
we have X is X, Y1 is Y, and there are no other Yi.

The first rule

if all Yi are nullable then
nullable[X] := true

is
if Y is nullable then

nullable[X] := true.

CS4447/CS9545

Specialize for X → Y

The second rule

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

can be instantiated only for i=1. It becomes

if Y1..Y0 is nullable then
FIRST[X] := FIRST[X] U FIRST[Y]

The condition is always satisfied as Y1..Y0 is empty.

FIRST[X] := FIRST[X] U FIRST[Y]

CS4447/CS9545

Specialize for X → Y

The third rule

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

can be instantiated only for i=1. It becomes

if Y2..Y1 is nullable then
FOLLOW[Y] := FOLLOW[Y] U FOLLOW[X].

The test is true (the empty string is nullable).

CS4447/CS9545

Specialize for X → Y

The fourth rule

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

has no instantiation.

The only Y is Y1, so we would have to have i=j=1.

But the subsequence Y2..Y0 is not defined.

CS4447/CS9545

Rules for X → Y

All the rules together for X → Y are

if Y is nullable then, nullable[Z] := true.

FIRST[X] := FIRST[X] U FIRST[Y]

FOLLOW[Y] := FOLLOW[Y] U FOLLOW[X].

CS4447/CS9545

Specialize for Y → ε

Taking Y → ε as the production X → Y1..Yk,
we have X is Y, and there are no Yi.

The first rule

if all Yi are nullable then
nullable[X] := true

is
if all zero of the Y’s are nullable (true) then

nullable[Y] := true.

CS4447/CS9545

Specialize for Y → ε

The second rule

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

cannot be instantiated as there are no Yi.

CS4447/CS9545

Specialize for Y → ε

The third rule

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

cannot be instantiated as there are no Yi.

CS4447/CS9545

Specialize for Y → ε

The fourth rule

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

has no instantiation as there are no Yi.

CS4447/CS9545

Rules for Y → ε

All the rules together for Y → ε are

nullable[Y] := true.

CS4447/CS9545

Specialize for Z → X Y Z

Taking Z → X Y Z as the production X → Y1..Yk,
we have X is Z, Y1 is X, Y2 is Y, Y3 is Z.

The first rule

if all Yi are nullable then
nullable[X] := true

is
if X, Y, Z are all nullable then

nullable[Z] := true.

CS4447/CS9545

Specialize for Z → X Y Z

The second rule

if Y1..Yi-1 are nullable then
FIRST[X] := FIRST[X] U FIRST[Yi]

can be instantiated for i=1,2 or 3. These give

if ε is nullable (which it is) then
FIRST[Z] := FIRST[Z] union FIRST[X]

if X is nullable then
FIRST[Z] := FIRST[Z] union FIRST[Y]

if XY is nullable then ou
FIRST[Z] := FIRST[Z] union FIRST[Z]

CS4447/CS9545

Specialize for Z → X Y Z

The third rule

if Yi+1..Yk are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FOLLOW[X]

can be instantiated for i=1,2,3. These give
if YZ is nullable then

FOLLOW[X] := FOLLOW[X] union FOLLOW[Z]
if Z is nullable then

FOLLOW[Y] := FOLLOW[Y] union FOLLOW[Z]
if ε is nullable then

FOLLOW[Z] := FOLLOW[Z] union FOLLOW[Z]

CS4447/CS9545

Specialize for Z → XYZ

The fourth rule

if Yi+1..Yj-1 are all nullable then
FOLLOW[Yi] := FOLLOW[Yi] U FIRST[Yj]

has instantiations for (i,j) = (1,2), (1,3), (2,3).
if ε is nullable then

FOLLOW[X] := FOLLOW[X] union FIRST[Y]
if Y is nullable then

FOLLOW[X] := FOLLOW[X] union FIRST[Z]
if ε is nullable then

FOLLOW[Y] := FOLLOW[Y] union FIRST[Z]

CS4447/CS9545

Rules for Z → X Y Z

if X, Y, Z all nullable then nullable[Z] := true.
if X is nullable then FIRST[Z] := FIRST[Z] union FIRST[Y]
if XY is nullable then FIRST[Z] := FIRST[Z] union FIRST[Z]
if YZ is nullable then FOLLOW[X] := FOLLOW[X] union FOLLOW[Z]
if Z is nullable then FOLLOW[Y] := FOLLOW[Y] union FOLLOW[Z]
if Y is nullable then FOLLOW[X] := FOLLOW[X] union FIRST[Z]

FIRST[Z] := FIRST[Z] union FIRST[X]
FOLLOW[X] := FOLLOW[X] union FIRST[Y]
FOLLOW[Y] := FOLLOW[Y] union FIRST[Z]
FOLLOW[Z] := FOLLOW[Z] union FOLLOW[Z]

CS4447/CS9545

All the Rules We Need to Iterate

nullable[X] := true, if Y is nullable
nullable[Y] := true.
nullable[Z] := true, if X, Y, Z all nullable

FIRST[X] := FIRST[Z] U {a}
FIRST[Y] := FIRST[Z] U {c}
FIRST[Z] := FIRST[Z] U {d}

FIRST[X] := FIRST[X] U FIRST[Y]
FIRST[Z] := FIRST[Z] U FIRST[X]
FIRST[Z] := FIRST[Z] U FIRST[Y], if X is nullable
FIRST[Z] := FIRST[Z] U FIRST[Z], if XY is nullable // Trivial can drop it

FOLLOW[X] := FOLLOW[X] U FIRST[Y]
FOLLOW[X] := FOLLOW[X] U FIRST[Z], if Y is nullable
FOLLOW[Y] := FOLLOW[Y] U FIRST[Z]

FOLLOW[X] := FOLLOW[X] U FOLLOW[Z], if YZ is nullable
FOLLOW[Y] := FOLLOW[Y] U FOLLOW[Z], if Z is nullable
FOLLOW[Y] := FOLLOW[Y] U FOLLOW[X]
FOLLOW[Z] := FOLLOW[Z] U FOLLOW[Z]

CS4447/CS9545

CS4447/CS9545

Now Can Iterate to Fill in the Table

Z → d Y →ε X → Y

Z → X Y Z Y → c X → a

nullable FIRST FOLLOW

X false a c d

Y true c d

Z false d

nullable FIRST FOLLOW

X true a c a c d

Y true c a c d

Z false a c d

nullable FIRST FOLLOW

X false

Y false

Z false

